Creating A Clean, Affordable, and Resilient Energy Future For the Commonwealth

COMMONWEALTH OF MASSACHUSETTS
Charles D. Baker, Governor
Karyn E. Polito, Lt. Governor
Matthew A. Beaton, Secretary
Judith F. Judson, Commissioner

Solar Massachusetts Renewable Target (SMART)
Program Transition and Launch

October 31, 2018
Agenda

• SREC II Transition
• Differences between SREC II and SMART
• DPU Order Details
• SMART Application Process
• Other Information
SREC II Transition

• Pursuant to its authority under both the RPS Class I and SMART regulations, DOER has established **November 26, 2018** as the transition date from the SREC II Program to the SMART Program

• This date will mark the opening of the SMART Program with respect to the intake of Statement of Qualification Applications from prospective applicants

• This date also marks the end of the SREC II Program, and triggers a number of requirements for facilities seeking qualification under the SREC II Program
SREC II Transition

November 26, 2018

• SREC II Ends
 - Systems sized 25 kW DC or less
 ▪ Must be operational on or before November 26, 2018 in order to qualify
 ▪ Must submit an application to DOER by February 15, 2019
 ▪ Application must include documentation that they were authorized to interconnect on or before November 26, 2018
 - Systems larger than 25 kW DC
 ▪ Must submit an application to DOER and be mechanically complete by November 26, 2018
 ▪ Must submit proof of mechanical completion to DOER.SREC@mass.gov by December 10, 2018
 ▪ Acceptable documentation includes
 • Certificate of Completion signed by wiring inspector
 • Evidence that a wiring inspection has been scheduled soon after November 26, 2018
 • An affidavit signed by the Engineer of Record
SMART Initial Application Period

November 26, 2018

- SMART Application Portal Opens
 - 12:00 PM ET the portal will open and the initial application period will begin, which will last for five business days
 - All applications received through 11:59 PM ET on November 30, 2018 will be considered as having been submitted at the same time for the purposes of determining placement in a Capacity Block
 - Applications for facilities less than or equal to 25 kW AC will be reviewed and placed into Capacity Blocks in the order that their contract was executed
 - Applications for facilities greater than 25 kW AC will be reviewed and placed into Capacity Blocks in the order that their Interconnection Services Agreement was executed
 - All applications received on or after 12:00 AM ET December 1, 2018 will be reviewed and placed into Capacity Blocks on a first come, first served basis
Key Differences Between SREC II and SMART

• SMART regulation requires that installers submit applications on behalf of customers and include such services in the contract with their customer (see 225 CMR 20.06(1)(b)1.):
 “Contract service must include responsibility for the Statement of Qualification Application process including submittal of authorization to interconnect, securing required permits and engineering approvals, installation of the project, scheduling and participation in all required inspections, and providing warranty services, as required.”

• Application fee required at submittal
 - The EDCs continue to finalize application fee, which will be announced soon

• Two part application process
 - Preliminary Application (pre-interconnection)
 - To reserve a facility’s position in Capacity Block
 - Claim (post-interconnection)
 - To enroll a facility in tariff in order to begin receiving incentive payments

• All applications for facilities sized 25 kW AC or less must include a signed Customer Disclosure Form
 - Different forms for direct owned vs. third-party owned

• All recipients of credits from a Community Shared Solar facility must also sign a Customer Disclosure Form
Key Differences Between SREC II and SMART (continued)

• EDCs will own production meters and will be responsible for collecting data and reporting to NEPOOL GIS (no more PTS reporting requirements)
 - Owner of PV system responsible for paying for meter via the interconnection process
 - Installers must leave open socket for utility owned production meter when designing systems
• EDCs own all Renewable Energy Certificates (RECs) for the duration of the tariff term
 - Customer must sign a REC assignment form acknowledging the EDCs ownership of the RECs before enrolling in tariff
• Taxation of incentive payments
 - EDCs will issue a 1099 to all recipients of incentive payments annually
 - W-9 required as part of application submission
Eversource Capacity Block Consolidation

- Eversource Consolidation
 - DPU directed Eversource to work with DOER to treat Eversource as a single distribution Company and “to work quickly and collaboratively with DOER: (1) to determine the new SMART Program capacity blocks and BCR; and (2) to resolve other issues related to merging NSTAR and WMECo.”
 - After discussions with DOER, Eversource filed the proposed plan:
 1. Remove all references to WMECO from program documents
 2. Propose maintaining the existing Capacity Blocks and Base Compensation Rates for each portion of Eversource’s service territory, referring to them as Eversource East and Eversource West instead of NSTAR and WMECO, respectively
Alternative On-Bill Credit

- Alternative On-bill Credit
 - Approved by DPU
 - Value of bill credit set at basic service rate of the generator
 - Only available to Standalone Solar Tariff Generation Units (i.e. not available to Behind-the-Meter Solar Tariff Generation Units)
 - No limit on the number of credits that can be transferred to customers
 - Credits can be transferred across ISO-NE load zones, but not across utility service territories
 - Credits must be allocated to customer bill within three billing periods
 - EDCs must start tracking delays and misallocations
 - Payment Credit/Transfer form can be updated twice a year until process is automated
 - EDCs expected to take steps toward automation of process
SMART Factor/Cost Recovery

• SMART Factor
 - Separate line item on customer bill
 - Volumetric charge that facilitates EDC recovery of programmatic costs
 - Initially structured as a bypassable charge, but will transition to a non-bypassable charge at some point in 2019 or 2020
 - EDCs must consult with DOER on how the charge will appear on customer’s bills as part of their November 1, 2018 SMART Factor filings
SMART Program Participant Costs

• Application Fee
 ➢ Paid one time upon initial application
 ➢ Must be paid again if applying for supplemental adder eligibility following issuance of Preliminary Statement of Qualification or Final Statement of Qualification:
 o Energy Storage Adder
 o Off-taker Based Adder

• SMART Production Meter(s)
 ➢ Paid for during interconnection application
 o Process may be slightly different for early stage program applicants that already went through the interconnection process before the start of the program
 ➢ Total meter costs paid for by interconnecting customer
 ➢ May be multiple meters if paired with energy storage depending on configuration
SMART Application Webinar

• On **October 24, 2018**, DOER, CLEAResult, and the EDCs hosted a webinar on the SMART Statement of Qualification Application process
• A recording of the webinar can be found [here](#)
• Questions on the webinar should be directed to DOER.SMART@mass.gov or MA.SMART@cleareesult.com
Application Process

1. Small <=25 kW Signed Installation Contract
2. Apply in PowerClerk
3. Preliminary Statement of Qualification
4. Install and Interconnect System
5. Submit Incentive Claim in PowerClerk
6. Final Statement of Qualification
7. EDC Begins Payments

Paraquel para sol que <=5 MW
EDC Interconnection Agreement
Application Process

SMART Application
1. Submit application for Preliminary Statement of Qualification to CLEAResult
2. CLEAResult reviews application
 a) If corrections are needed - Applicant has 10 business to cure
 b) If not cured in a satisfactory way, Application rejected
3. CLEAResult advises DOER on approval of application
4. DOER issues the Preliminary Statement of Qualification
 a) Capacity Block and Base Compensation Rate assigned
 b) 12-month Initial Reservation Period starts
5. If necessary, submit paperwork to obtain Extended Reservation Period
6. Solar Tariff Generation Unit becomes operational
7. Submit application for Claim and final Statement of Qualification
8. CLEAResult advises DOER on approval of application
9. DOER issues the Final Statement of Qualification
 a) CLEAResult notifies EDC of final approval and Applicant is enrolled in tariff
Capacity Block and Adder Progression

Capacity Blocks

• Assigned on rolling basis
• If a project covers two Capacity Blocks, a unique prorated rate will be assigned
• Capacity that becomes available will be added to current open block

Adder Tranches

• Assigned on rolling basis
• First adder tranche of 80 MW secured based on PV size of project
• If project covers two Adder Tranches, project will fall into tranche with majority of eligible capacity
 ➢ e.g. 600 kW left in Tranche 2, 1 MW project applies and fully qualifies in Tranche 2, Tranche 3 is reduced by 400 kW”
Preliminary Statement of Qualification
Application Requirements and Process

Required documentation submitted with initial application

- 25 kW AC and less
 - Turnkey Contract with Installer
 - Customer Disclosure Form
 - Low-income utility rate if applicable
- Over 25 kW AC
 - ISA
 - Site Control
 - Non-ministerial permits
 - Other documentation as necessary if applying for certain adders

Cure period is to correct administrative errors, not to provide extra time to procure required documentation

- If missing documentation provided during the cure period is dated after the original submission date, application will be rejected, and applicant will be required to reapply
 - For example, if an unexecuted ISA is submitted and flagged as an issue that needs to be cured, it is not permissible to subsequently submit an executed version with an execution date after the application submission date. If this were to occur, the application would be rejected.

Adder eligibility

- Some adders have required documentation at preliminary application
- Determination of ineligibility for an Adder does not disqualify eligibility for Base Rate
Claim Application Requirements and Process

1. By Reservation Period Deadline, Applicant must file Claim or file for one of the following Reservation Period Extensions
 a) Up to 6 month extension for a fee of $25/kW AC
 b) Up to 6 month extension for legal challenge to an issued permit
 c) Indefinite extension if Applicant demonstrates facility is mechanically complete by submitting signed Certificate of Completion
 d) Good Cause extension - May only seek after obtaining extension for a fee
2. Solar Tariff Generation Unit is issued Authorization to Interconnect by distribution company
3. Applicant submits Claim application via application portal
4. Applicant updates system information with final as-built system specs
 a) Equipment, size, ownership information all finalized at this point
5. Submit any required information for final Adder eligibility
 a) e.g. Schedule Z / Payment Credit Transfer Forms, CSS Customer Disclosure Forms, etc.
6. CLEAResult reviews Claim for eligibility
7. CLEAResult recommends to DOER that final SQ be issued
8. DOER reviews and issues final SQ
9. CLEAResult notifies distribution company, and STGU is enrolled in that Company’s tariff
Qualification Considerations – Claim Application

Size of Solar Tariff Generation Unit
• Final as built AC size may not exceed AC capacity reserved
• Final as built AC size may be less than AC capacity reserved
• Final as built DC size may exceed DC capacity reserved, so long as AC size is not increased

Tax Documentation
• Tax forms and payment information must be provided for incentive payment recipient during the Claim application process
Incentive Payments

- SMART Effective Date will be set in final Statement of Qualification
 - SMART Effective Date reflects first day production is eligible to receive incentive payments and generate Class I RECS
 - Is generally the same as a project’s Commercial Operation Date
- Incentive payments will begin to be paid within three billing cycles of claim approval
- Incentive payments made on a monthly basis, via check or electronic funds transfer
 - Applicant chooses whether to receive check or ACH
- Incentive payments have a 90-day lifespan
 - If recipient of incentive payments changes, information for the new recipient must be provided expeditiously to avoid loss of incentive payments
- Behind-the-Meter Systems
 - Must have confirmation that EDC meter is installed before claim can be approved
Energy Storage Adder

- Final Guideline published in September 2018
- In addition to regulatory requirements, Guideline contains operational requirements
 - Standalone Systems
 Option #1: The Energy Storage System may fulfill the operational requirements by dispatching the Energy Storage System during the summer peak hours and winter peak hours. Energy Storage System Owners may choose when to cycle during any hours included during this window.
 Option #2: The Energy Storage System may fulfill the operational requirement through registration in the ISO-NE wholesale market or a retail-level program aimed at reducing ratepayer costs, if deemed satisfactory to the Department.
 - Behind-the-meter Systems
 Demonstrate that the Energy Storage System reduces on-site customer peak demand or increases self-consumption of on-site generated solar energy.
- Compliance with requirements demonstrated with 15 minute interval data submitted to DOER after first year of operation
Remaining Implementation Steps at DPU

Tariff Approval
• EDCs filed revised model tariff on October 16, 2018
• Revised tariff will reflect changes required by DPU order
• DPU will review revised model tariff and direct EDCs to file company specific compliance tariffs
• Upon approval of the compliance tariffs, EDCs may begin issuing incentive payments

Cost Recovery
• EDCs must file company specific cost recovery filings by November 1, 2018
• Will detail cost estimates and procedures for how SMART Factors will be implemented beginning in 2019
• Will also provide further details on programmatic elements as required by the DPU in its order
• For example, EDCs must work with DOER to determine how SMART Factor will be named and appear on customer bills
400 MW Review

• DOER will conduct a review of the program when 400 MW of preliminary Statements of Qualification have been issued
• Following first week of the SMART Application, CLEAResult will post data regarding how many applications have been submitted
• DOER expects initial review of applications to take several weeks, and expects that the first Statements of Qualification will begin to be issued within a month of initial launch (depending on application volume)
• DOER may amend the SMART Regulation and/or Guidelines as part of its review
Eversource Metering Wiring Diagrams

MA SMART Program Specific

October 2018
SMART Program Specifics

• For more information on the SMART Program please visit www.MASolar.com

Agenda

• Eversource Interconnection Changes for the SMART Program
• Meter Configurations
• Meter Configuration Diagrams

Metering Questions Contacts:

• Eastern MA – Paul Murphy (paul.murphy@eversource.com)
• Western MA - Greg Pivin (greg.pivin@eversource.com)
Interconnection Process

Remaining the Same

• Requests for meters are made to the DG Interconnections team
 • Eversource will install and support all Revenue and Production meters
 • Eversource will provide a PTO upon successful connection

Changes for the SMART Program

• DG will ask for your intention to participate within SMART Program
• For Behind the Meter Installations (BTM)
 • Customer will be charged the cost of BTM Production Meter and installation fees upon submission of the SMART Application Fee via the Web Portal
 • Note: for larger, complex systems (additional charges still apply from ES engineering, i.e., CTs’, PT’s, etc.)
 • Will require customer-installed wiring, and installation of a second meter socket
 • Must be adequately accessible, proximate to existing utility revenue meter
<table>
<thead>
<tr>
<th>Service Type Type</th>
<th>Project size</th>
<th>Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/240V Single Phase</td>
<td>Under 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>2S Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208V Single Phase</td>
<td>Under 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>(Network)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12S Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208V Three Phase</td>
<td>Under 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>4-wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277/480V Three Phase</td>
<td>Under 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>4-wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240V Single Phase</td>
<td>Over 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>Over 60KW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2S Interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208V Single Phase</td>
<td>Over 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>(Network)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12S Interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208V Three Phase</td>
<td>Over 60 KW</td>
<td>Form</td>
</tr>
<tr>
<td>4-wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S Interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277/480V Three Phase</td>
<td>Over 60KW</td>
<td>Form</td>
</tr>
<tr>
<td>4-wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S Interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT Rated Single Phase (secondary CTs/PTs)</td>
<td>Over 400A</td>
<td>Form</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ma SMART

Metering Diagrams

Metering Notes:

- **BTM:** Behind the Meter installation option
- **DER:** Distributed Energy Resource
- **DG:** Distributed Generator/Solar Array
- **ESS:** Energy Storage System
- **EPS:** Electric Power System
- **IC:** Interconnecting Customer
- **PCC:** Point of Common Coupling
- **PoC:** Point of Connection

27
1a. BTM <60kW

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
- * Alternative interconnection point ahead of the main breaker, but behind the revenue meter is acceptable.
 >>> No connections are to be made within the revenue meter socket. <<<

Note 2
- * Where Utility Meter is inside, the interconnecting customer will upgrade the existing service to move the metering location outside together with the Utility Ma SMART meter.

Note 3
- * Utility feed for the MA SMART meter will be connected to the top of the meter socket; DG will be wired to the bottom of the meter socket.

Retail

Residential/Commercial DG Customer
Behind the Meter Ma SMART <60 kW
With No ESS System

UTILITY – AREA EPS

Interconnection
Customer – Local EPS C

Customer Load

DG

Customer Main Service Equipment

Po

PC

Utility Meters are Bi-directional/Net AMR Meter Type and Utility Owned
Meter Locations determined by Utility for Service Access Requirements
Residential/Commercial DG Customer
Behind the Meter Ma SMART <60 kW
With AC coupled ESS System
UTILITY – AREA EPS

Interconnection
Customer – Local EPS C

Customer Main Service
Equipment

Customer Load

Utility Meters are Bi-directional/Net AMR Meter Type and Utility Owned
Meter Locations determined by Utility for Service Access Requirements
1c. BTM <60kW

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Alternative interconnection point ahead of the main breaker, but behind the revenue meter is acceptable.
>>> No connections are to be made within the revenue meter socket. <<<

Note 2
* Where Utility Meter is inside, the interconnecting customer will upgrade the existing service to move the metering location outside together with the Utility MA SMART meter.

Note 3
* Utility feed for the MA SMART meter will be connected to the top of the meter socket; DG will be wired to the bottom of the meter socket.
2a. BTM >60kW to 500kW

AC Connection to Utility EPS 60kW – 500kW
Behind the Meter Ma SMART
Without ESS System
Utility Service Connection
3-Phase 4-Wire System
Secondary Metering

Interconnection Point

Utility Customer

Utility Revenue Meter

Main Service Equipment
Main Service Disconnect
PV Generator
Main Distribution Panel
Premise Load

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Utility Revenue Meter installed will be Bi-directional/NET/Recording meter and meet the requirements of the billing rate.
* Where Utility Meter is inside, the interconnecting customer will upgrade the existing service to move the metering location outside with the Utility Ma SMART meter.

Note 2
* Must have a Cellular connection at Meter location.
* Meter will have bi-directional interval recording capabilities.
* Secondary metering CTs/VTs may be required.
This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
- Utility Revenue Meter installed will be Bi-directional/NET/Recording meter and meet the requirements of the billing rate.
- Where Utility Meter is inside, the interconnecting customer will upgrade the existing service to move the metering location outside with the Utility Ma SMART meter.

Note 2
- Must have a Cellular connection at Meter location.
- Utility Meter will have bi-directional interval recording capabilities.
- Secondary metering CTs/VTs may be required.
2c. BTM >60kW to 500kW

AC Connection to Utility EPS 60kW – 500kW
Behind the Meter Ma SMART
With DC coupled ESS System
Utility Service Connection
3-Phase 4-Wire System
Secondary Metering

Interconnection Point → Utility Customer

Utility Revenue Meter

Note 1
* Utility Revenue Meter installed will be Bi-directional/NET/Recording meter and meet the requirements of the billing rate.
* Where Utility Meter is inside, the interconnecting customer will upgrade the existing service to move the metering location outside with the Utility Ma SMART meter.
* Secondary metering CTs/VTs may be required.

Note 2
* Must have a Cellular connection at Meter location.
* Meter will have bi-directional interval recording capabilities.
* Secondary metering CTs/VTs may be required.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
3a. BTM >500kW

AC Connection to Utility EPS 500kW and Greater
Behind the Meter Ma SMART
With No ESS System
Utility Service Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point → Utility Customer

Customer Main Service Equipment

Main Interrupting Device

PV Interrupting Device

Main Bus

PV Gen Disconnect

Premise Loads

PV Step-Up Transformer

AC/DC Inverter

PV Array

Utility Revenue Meter

Notes 1 & 3

Note 1
Utility Revenue & SMART Meters installed will be bi-directional recording cellular meters. Must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility feed.
3-phase 4-wire WYE metering connection.

Note 3
Must have a cellular connection at the meter location.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
3b. BTM > 500kW

AC Connection to Utility EPS 500kW and Greater
Behind the Meter Ma SMART
With AC coupled ESS System
UTILITY SERVICE Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point → Utility Customer

Customer Main Service Equipment

Main Disconnect

Main Interrupting Device

PV Array

PV Generator Disconnect

AC/DC Inverter

ESS Disconnect

ESS Interrupting Device

PV Step-Up Transformer

Utility Revenue Meter

Notes 1 & 3

Note 2

Utility MA SMART Meter

Notes 1 & 3

Note 2

Utility MA SMART ESS Meter

Notes 1 & 3

Note 2

Utility Battery Storage

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
Utility Revenue, SMART & ESS meters installed will be Bi-directional recording cellular meters. Must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility feed.
3-phase 4-wire WYE metering connection.

Note 3
Must have a cellular connection at the meter location.
3c. BTM > 500kW

AC Connection to Utility EPS 500kW and Greater
Behind the Meter Ma SMART
With DC coupled ESS System
UTILITY SERVICE Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point → Utility Customer

Customer Main Service Equipment
Main Disconnect
Main Interrupting Device
Main Bus

To Utility Revenue Metering
Utility Revenue & SMART Meters installed will be Bi-directional recording cellular meters. Must be accessible.

PV/ESS Interrupting Device
PV/ESS Step-Up Transformer
AC/DC Inverter

PV Gen Disconnect
DG
PV Array
ESS Battery Storage

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
Utility Revenue & SMART Meters installed will be Bi-directional recording cellular meters. Must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility feed.
3-phase 4-wire WYE metering connection.

Note 3
Must have a cellular connection at the meter location.

Notes 1 & 3

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
Utility Revenue & SMART Meters installed will be Bi-directional recording cellular meters. Must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility feed.
3-phase 4-wire WYE metering connection.

Note 3
Must have a cellular connection at the meter location.

Notes 1 & 3

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
Utility Revenue & SMART Meters installed will be Bi-directional recording cellular meters. Must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility feed.
3-phase 4-wire WYE metering connection.

Note 3
Must have a cellular connection at the meter location.

Notes 1 & 3
Stand Alone Wiring Diagrams
4a. Stand Alone <60kW

Retail Commercial DG Customer
Stand Alone Ma SMART <60 kW
With No ESS System

UTILITY – AREA EPS

Interconnection
Customer – Local EPS

Outside

Utility Revenue Meter
Note 1

Inside

Customer Main Service

Utility Meter is Bi-directional/Net Meter Type and Utility Owned
Meter Locations determined by Utility for Service Access Requirements

AC/DC Inverter

PV Array

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Utility Meter will be Bidirectional/Net KWH only meter
 to be used for Utility Revenue and REC determination purposes.
* Utility meter must be accessible.
4b. Stand Alone <60kW

Retail/Commercial DG Customer
Stand Alone Ma SMART <60 kW
With AC coupled ESS System

UTILITY – AREA EPS

Interconnection
Customer – Local EPS

Outside

Inside

Customer
Main
Service
Equipment

Utility Meter is Bi-directional/Net Meter Type and Utility Owned

Meter Locations determined by Utility for Service Access Requirements

Note 1

* Utility Meter will be Bidirectional/Net KWH only

* Utility Meter must be accessible.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
4c. Stand Alone
<60kW

Retail

Hospitality/Commercial DG Customer
Stand Alone Ma SMART <60 kW
With DC coupled ESS System

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Utility Meter will be Bidirectional/Net KWH only
 meter to be used for Utility Revenue and REC determination purposes.
 * Utility Meter must be accessible.

Utility Meter is Bi-directional/Net AMR Meter Type and Utility Owned
Meter Locations determined by Utility for AMR and Service Access Requirements.
5a. Stand Alone >60kW to 500kW

AC Connection to Utility EPS 60kW – 500kW
Stand Alone Ma SMART
Without ESS System
Utility Service Connection
3-Phase 4-Wire System
Secondary Metering

Interconnection Point → Utility Customer

Note 1
* Utility Meter will be Bidirectional Interval Recording cellular meter to be used for Utility Revenue and REC determination purposes.
* Secondary metering CTs/VTs may be required.
* Cellular connection at the meter location is required.
* Utility Revenue Meter must be accessible.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
5b. Stand Alone >60kW to 500kW

AC Connection to Utility EPS 60kW – 500kW
Stand Alone Ma SMART
With AC ESS System
Utility Service Connection
3-Phase 4-Wire System
Secondary Metering

Interconnection Point → Utility Customer

Note 1
* Utility Revenue Meter installed will be Bi-directional
 Interval Recording Cellular Meter
* Secondary metering CTs/VTs may be required.
* Cellular connection at the meter location is required.
* Utility Revenue Meter must be accessible.

Note 2
* Cellular connection at the meter location is required.
* Utility SMART and ESS Meters must be accessible.

Note 3
Every paired AC coupled PV Array and ESS system will be separately metered.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
5c. Stand Alone >60kW to 500kW

AC Connection to Utility EPS 60kW – 500kW
Stand Alone Ma SMART
With DC ESS System
Utility Service Connection
3-Phase 4-Wire System
Secondary Metering

Interconnection Point → Utility Customer

Utility Revenue Meter

Note 1
* Utility Revenue Meter installed will be Bi-directional
 Interval Recording Cellular Meter
* Secondary metering CTs/VTs may be required.
* Cellular connection at the meter location is required.
* Utility Revenue Meter must be accessible.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
6a. Stand Alone >500kW

AC Connection to Utility EPS 500kW and Greater
Stand Alone Ma SMART
With No ESS System
Utility Service Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point

Utility Customer

Customer Main Service Equipment

Main Disconnection

PV Interrupting Device

PV Generator Disconnect

Main Bus

PV Step-Up Transformer

AC/DC Inverter

PV Array

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Utility Revenue Meter installed will be Bi-directional Interval Recording cellular meter.
* Cellular connection at the meter location is required.
* Utility Revenue Meter must be accessible.
6b. Stand Alone
>500kW

AC Connection to Utility EPS 500kW and Greater
Stand Alone Ma SMART
With AC ESS System
Utility Service Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point

Utility Customer

Customer Main Service Equipment
Main Disconnect
Main Interrupting Device

ESS Disconnect
ESS Interrupting Device

PV Generator Disconnect
PV Generator Interrupting Device

PV Step-Up Transformer
AC/DC Inverter

PV Array
ESS Storage

To Utility SMART Metering

Utility MA SMART Meter

Note 1
* Utility Revenue, SMART and ESS Meters will be Bi-directional Interval Recording Cellular meter. Cellular connection at the meter location is required. Utility Revenue Meter must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility Feed

Note 3
Each pair of PV Array and AC coupled ESS System will be individually metered.

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.

Note 1
* Utility Revenue, SMART and ESS Meters will be Bi-directional Interval Recording Cellular meter. Cellular connection at the meter location is required. Utility Revenue Meter must be accessible.

Note 2
Polarity Mark of metering transformers is to be toward the Utility Feed

Note 3
Each pair of PV Array and AC coupled ESS System will be individually metered.
6c. Stand Alone >500kW

AC Connection to Utility EPS 500kW and Greater
Stand Alone Ma SMART
With DC ESS System
Utility Service Connection
3-Phase 4-Wire System
Primary Metering

Interconnection Point → Utility Customer

Note 1
* Utility Revenue Meter installed will be Bi-directional Interval Recording Cellular meter.
* Cellular connection at the meter location is required.
* Utility Revenue Meter must be accessible.

Note 2
PV Gen Disconnect
Main Bus

PV /ESS Interrupting Device

Main Interrupting Device

Customer Main Service Equipment

Main Disconnect

To Utility Metering

Utility Revenue Meter

PV Step-Up Transformer

AC/DC Inverter

DG

PV Array

ESS Battery Storage

This diagram is representative of a standard design. Please contact Eversource for approval, if a different configuration is needed.
Agenda

- **The Interconnection Process** – What’s changing, what won’t
- **Timeline**
- **Roles of the Parties** – DOER, EDC, SPA interactions with program participants and the parties
- **National Grid/Utilities Metering Drafts**
Summary of Important Dates and Actions

<table>
<thead>
<tr>
<th>Date(s)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 11, 2018 - October 19, 2018</td>
<td>In person SMART transition stakeholder meetings held throughout Commonwealth</td>
</tr>
<tr>
<td>October 16, 2018</td>
<td>EDCs jointly file revised model tariff with DPU</td>
</tr>
<tr>
<td>October 24, 2018</td>
<td>SMART Statement of Qualification Application webinar</td>
</tr>
<tr>
<td>November 1, 2018</td>
<td>EDCs individually file SMART Factor cost recovery filings with DPU</td>
</tr>
<tr>
<td>November 26, 2018</td>
<td>SMART Application Launches at 12 PM ET / Final Eligibility Date for SREC II</td>
</tr>
<tr>
<td>November 30, 2018</td>
<td>Initial SMART application period ends at 11:59 PM ET</td>
</tr>
<tr>
<td>Approx. December 1, 2018</td>
<td>MLP solar rebate program opens and begins accepting applications</td>
</tr>
<tr>
<td>December 10, 2018</td>
<td>Documents demonstrating mechanical completion due for SREC II systems larger than 25 kW DC</td>
</tr>
<tr>
<td>February 15, 2019</td>
<td>SREC II applications systems equal to or smaller than 25 kW DC due</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU order approving revised joint model tariff</td>
</tr>
<tr>
<td>TBD</td>
<td>EDCs file company specific SMART tariffs</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU approves company specific SMART tariffs</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU issues order on 17-146</td>
</tr>
</tbody>
</table>
The Interconnection Process

Things staying the same:

- EDC specific processes and tools for making, monitoring interconnection requests
- Interconnection timelines
- EDC teams supporting the interconnection process

The MA SMART / SPA incentive application process is designed to complement the EDC interconnection process, not replace it
The Interconnection Process

Things that will change:

- Additional applicant-paid metering charges
- In behind the meter situations, need for a second, utility installed meter for measuring system output behind the retail meter
 - Will require customer-installed wiring, installation of a second meter socket
 - Must be adequately accessible, proximate to existing utility revenue meter
<table>
<thead>
<tr>
<th>Issue type</th>
<th>Primary point of contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>General MA SMART Program questions</td>
<td>CLEAResult</td>
</tr>
<tr>
<td>Program / adder eligibility questions</td>
<td>DDER</td>
</tr>
<tr>
<td>Incentive application status / process questions</td>
<td>CLEAResult</td>
</tr>
<tr>
<td>Interconnection application status / process questions</td>
<td>EVERSOURCE nationalgrid Unitil</td>
</tr>
</tbody>
</table>
Key Distinction

<table>
<thead>
<tr>
<th>Behind-the-Meter</th>
<th>Standalone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>System that serves on-site load other than parasitic or station load utilized to operate the unit</td>
<td>System that serves no associated on-site load other than parasitic or station load utilized to operate the unit</td>
</tr>
</tbody>
</table>

Behind the meter systems will be compensated differently than standalone systems
DETAIL OF CURRENT CHARGES

Delivery Services

<table>
<thead>
<tr>
<th>Service Period</th>
<th>No. of Days</th>
<th>Current Reading</th>
<th>Previous Reading</th>
<th>Total Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 7 - Aug 5</td>
<td>29</td>
<td>1200</td>
<td>500</td>
<td>700</td>
</tr>
</tbody>
</table>

Meter Number: 999999999
Next Scheduled Read Date On Or About: Aug 8
Service Period: Jun 6 - Jul 7
Number Of Days In Period: 29
Rate: Residential Regular R-1

<table>
<thead>
<tr>
<th>Customer Charge</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist Chg</td>
<td>0.06236 x</td>
</tr>
<tr>
<td>Transition Charge</td>
<td>0.02084 x</td>
</tr>
<tr>
<td>Transmission Charge</td>
<td>0.0005 x</td>
</tr>
<tr>
<td>Energy Efficiency Chg</td>
<td>0.03056 x</td>
</tr>
<tr>
<td>Renewable Energy Chg</td>
<td>0.00054 x</td>
</tr>
</tbody>
</table>

Total Delivery Services: $85.86

Supply Services

Supplier: National Grid

| Energy Charge | 0.12673 x | 700 kWh | 88.71 |

Total Supply Services: $88.71

MA SMART Incentive Program

<table>
<thead>
<tr>
<th>Service Period No. of Days</th>
<th>Current Read</th>
<th>Previous Read</th>
<th>Total Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 7 - Aug 5</td>
<td>46005</td>
<td>44805</td>
<td>1200 kWh</td>
</tr>
</tbody>
</table>

Meter Number: 999999999
Next Scheduled Read Date On Or About: Aug 8
Service Period: Jun 6 - Jul 7
Number Of Days In Period: 31
Rate: Small C&I G-1

SMART Compensation Payment

| Total Compensation(Incl. QF pmL) | $0.28 x 1200kwh | $336.00 |

Total SMART Payment: $336.00
Residential/Commercial DG Customer
SMART SOLAR Metering Notes

DEF: Distributed Energy Resource
DG: Distributed Generator (a subset of DER)
EPS: Electric Power System
IC: Interconnection Customer
PCC: Point of Common Coupling
PoC: Point of Connection
Wh: Watt-hour Meter (may include demand quantities of Watts and VA)

NOTES:
1. All Interval metering requires telemetry.
2. Grouped meter location and installation shall be according to National Grid’s jurisdiction applicable service and tariff requirements. See ESB 750 and ESB 756 Appendix C for the MA service jurisdiction (https://www.nationalgridus.com/ProNet/Technical-Resources/Electric-Specifications).
 - IC installs meter socket trough grouped at service location accessible for National Grid’s AMR meters (net type for load + DER and bi-directional for MA SMART DER).
 - < 60 kW applications are watt-hour type revenue meters and > 60 kW are interval type.
 - All kWh measured through the MA SMART meter is compensated through the MA SMART incentive rate.
3. Generator disconnect installed according to NEC and National Grid’s MDPU Interconnection Tariff.
4. Inverters shall be UL 1741 or UL 1741 SA certified for parallel operation with the utility (area EPS).
5. Where existing PCC meter is inside, the IC will upgrade their service connection to change it to outside location grouped with MA SMART Solar meter.
6. Bypass meter sockets required in accordance to ESB 750 table 7.2-1.
7. Certified Inverter-based DER Interconnections <25kW may not be required to have an additional disconnecting means in accordance with ESB 756 Appendix C.
8. The following drawings are conceptual only. It is the responsibility of the customer to adhere to all applicable codes, standards and requirements.
9. 25 kW and below residential services do not require an additional disconnect at the Smart Solar production meter.
BTM < 60 kW

This diagram is representative of one proposal and the utility may require other configurations.
BTM < 60 kW

Residential/Commercial DG Customer
Behind the Meter MA SMART < 60 kW
(Tap Ahead of Main Service Equipment)

This diagram is representative of one proposal and the utility may require other configurations.
BTM < 60 kW

RETAIL
Residential/Commercial DG Customer
Behind the Meter MA SMART < 60 kW

With AC ESS SYSTEM
UTILITY – AREA EPS

INTERCONNECTION
CUSTOMER – LOCAL EPS

OUTSIDE
INSIDE

Main Service Equipment
Generator Disconnect

PoC

FACILITY LOADS

DG

DG Protection & Control

Inverter
(charge & discharge)
Battery Storage

ESS System

UTILITY
REVENUE METER

UTILITY
REVENUE METER
MA SMART

See Note 9

 THIS diagram is representative of one proposal and the utility may require other configurations.

REVENUE METERS ARE BI-DIRECTIONAL, NET METER AMR TYPE AND UTILITY OWNED.
METER LOCATIONS DETERMINED BY UTILITY FOR AMR ACCESS REQUIREMENTS.
BTM < 60 kW

This diagram is representative of one proposal and the utility may require other configurations.

REVENUE METERS ARE BI-DIRECTIONAL, NET METER AMR TYPE AND UTILITY OWNED. METER LOCATIONS DETERMINED BY UTILITY FOR AMR ACCESS REQUIREMENTS.
BTM >60 kW to 500 kW
BTM >60 kW to 500 kW

This diagram is representative of one proposal and the Company may require other configurations.
BTM >60 kW to 500 kW
STGU Paired AC Connection to Utility EPS 500kW and Greater

Behind the Meter MA SMART

Utility's Radial Distribution
Primary 3-Phase, 4-Wire System
Primary Metering

Point of Common Coupling (PCO) or Service Point

See Note 2

DER Customer
Main Service Equipment

L.B.

MAIN DISCONNECT

MAIN INTERRUPTING DEVICE

Main Bus

Premises Loads

Utility

Customer

Customer's DER Facility

PV Step-Up Transformer

Collector PV Array AC
Disconnect & O.C. Protection
Aux. Load

Inverter

PV Array DC Disconnect

PV Array

This diagram is representative of one proposal and the Company may require other configurations.
BTM > 500 KW
RETAIL
Residential/Commercial DG Customer
Stand Alone MA SMART < 60 kW

INTERCONNECTION CUSTOMER – LOCAL EPS

UTILITY – AREA EPS

PCC

wh

UTILITY REVENUE METER

Main Service Equipment

Generator Disconnect

DG

REVENUE METERS ARE BI-DIRECTIONAL, NET METER AMR TYPE AND UTILITY OWNED. METER LOCATIONS DETERMINED BY UTILITY FOR AMR ACCESS REQUIREMENTS.

This diagram is representative of one proposal and the utility may require other configurations.
Stand Alone < 60 kW

This diagram is representative of one proposal and the utility may require other configurations.

RETAIL
Residential/Commercial DG Customer
Stand Alone MA SMART < 60 kW
With AC ESS SYSTEM
UTILITY – AREA EPS

INTERCONNECTION
CUSTOMER – LOCAL EPS

PCC

UTILITY
REVENUE METER

WH

Generator Disconnect
Main Service Equipment

PoC

DG Protection & Control

Battery
AC Disconnect

Inverter
(charge & discharge)

ESS System

Battery Storage

REVENUE METERS ARE BI-DIRECTIONAL, NET METER AMR TYPE AND UTILITY OWNED.
METER LOCATIONS DETERMINED BY UTILITY FOR AMR ACCESS REQUIREMENTS.
Stand Alone < 60 kW

This diagram is representative of one proposal and the utility may require other configurations.

RETAIL
Residential/Commercial DG Customer
STAND ALONE MA SMART < 60 kW
With DC ESS SYSTEM
UTILITY – AREA EPS

INTERCONNECTION
CUSTOMER – LOCAL EPS

PCC
UTILITY REVENUE METER

Main Service Equipment
Generator Disconnect

PoC
DG Protection & Control

Inverter (charge & discharge)
Battery Storage

ESS System

REVENUE METERS ARE BI-DIRECTIONAL, NET METER AMR TYPE AND UTILITY OWNED.
METER LOCATIONS DETERMINED BY UTILITY FOR AMR ACCESS REQUIREMENTS.
Stand Alone > 60 kW to < 500 kW

This diagram is representative of one proposal and the Company may require other configurations.
Stand Alone > 60 kW to < 500 kW

AC ESS Battery + STGU Paired AC Connection to Utility EPS 60 to 500kW

STAND ALONE MA SMART
Utility’s Radial Distribution
3-Phase, 4-Wire System
Secondary Metering

Service Point or PCC
Service Entrance

Utility Customer

Utility Interval Revenue bi-directional Meter

Main Service Equipment
Main Service Disconnect
Main Distribution Panel

PV Generator Disconnect

ESS Disconnect

Collector PV Array
AC Disconnect

Inverter (string)
PV Array

Inverter (charge & discharge)
Battery Storage

ESS System

This diagram is representative of one proposal and the Company may require other configurations.
Stand Alone > 60 kW to < 500 kW

This diagram is representative of one proposal and the company may require other configurations.
Stand Alone > 60 kW to < 500 kW

This diagram is representative of one proposal and the Company may require other configurations.
Stand Alone > 500 kW

STGU AC Connection to Utility EPS 500kW and Greater

STAND ALONE MA SMART
Utility's Radial Distribution
Primary 3-Phase, 4-Wire System
Primary Metering

Point of Common Coupling (PCC) or Service Point
See Note 2

DG Customer
Main Service Equipment

MAIN DISCONNECT

Customer's DG Facility

MAIN INTERRUPTING DEVICE

Utility Internal kWh Metering

PV Step-Up Transformer

Collector PV Array
AC Disconnect & O.C. Protection
Aux. Load

Inverter

PV Array
DC Disconnect

PV Array
Stand Alone > 500 kW

[Diagram of AC ESS Battery + STGU Paired AC Connection to Utility EPS 500kW and Greater]

This diagram is representative of one proposal and the Company may require other configurations.
Stand Alone > 500 kW
Gerald (Jed) Ferris
Smart Solar Program Manager
National Grid
401 784-7364 Work
401 450-9417 Cell
Gerald.Ferris@nationalgrid.com
245 South Main Street, Hopedale, MA.

https://www.mass.gov/solar-massachusetts-renewable-target-smart
Solar Massachusetts Renewable Target ("SMART") Program
Metering Configurations

The drawings included in this document are guidelines for metering configurations related to the MA-SMART program. The guidelines depict typical metering configurations with the understanding that all system designs will be reviewed and inspected by Unitil personnel prior to approval. Consideration for meter configurations include:

1. Revenue and production meters will be Unitil owned, bi-directional, watt-hour meters.
2. Unitil owned meters will be installed, removed, and changed by authorized Unitil personnel or approved contractors.
3. Meter location and installation shall be according to Unitil’s jurisdiction applicable service and tariff requirements.
4. Unless in located in an approved electrical utility room, existing revenue meter that are located inside, will require the service connection be upgraded so both the revenue and production meter are located outside.
5. Revenue and production meters will be located in close proximity of each other.
6. Meter sockets up to 400 amps will be provided by the customer.
7. Meter installations rated greater than 400 amps will require transformer rated metering.
8. For inverters with AC ratings > 60 kW, both revenue and production watt-hour meters are capable of recording interval readings. These applications require telemetering be available.
9. Generator disconnect switch is to be installed in accordance with NEC and Unitil’s interconnection requirements.
Behind the Meter Solar

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

UNITIL ELECTRIC POWER SYSTEM

INTERCONNECTION CUSTOMER

OUTSIDE

INSIDE

Main Service equipment

REVENUE NET METER*

SOLAR PRODUCTION NET METER*

Inverter

PV Array

FACILITY LOADS

* Transformer rated metering is required for ratings > 400 amps
Behind the Meter Solar
Alternative Connection

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

UNITIL ELECTRIC SYSTEM

INTERCONNECTION CUSTOMER

NEC Junction Box and Tap

OUTSIDE

INSIDE

Main Service Equipment

Inverter

PV Array

FACILITY LOADS

REVENUE NET METER*

SOLAR PRODUCTION NET METER*

* Transformer rated metering is required for ratings > 400 amps
Behind the Meter Solar AC Coupled with Storage <= 60 kW

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

UNITIL ELECTRIC SYSTEM

INTERCONNECTION CUSTOMER

OUTSIDE

INSIDE

Main Service Equipment

Facility Loads

PV Array

Inverter

Battery AC Disconnect

Inverter (charge & discharge)

Battery Storage

ESS System

* Transformer rated metering is required for ratings > 400 amps
Behind the Meter Solar > 60kW AC Coupled with Storage > 60kW

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

* Transformer rated metering is required for ratings > 400 amps
Stand Alone Solar

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

* Transformer rated metering is required for ratings > 400 amps
Stand Alone Solar AC Coupled with Storage <= 60kW

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

* Transformer rated metering is required for ratings > 400 amps
Stand Alone Solar AC Coupled with Storage > 60kW

This diagram is representative of a typical system design. All system configurations must be approved by Unitil.

* Transformer rated metering is required for ratings > 400 amps
MLP Solar Program

• DOER has collaborated with representatives from the Municipal Light Districts to develop an incentive program
• Incentive program will mainly serve to incentivize residential installations
• Incentives will be in the form of rebates for facilities less than or equal to 25 kW DC
• Similar structure to the Commonwealth Solar Rebate Program
• Class I RECs from participating facilities will be transferred to the MLP for a 10-year period
• DOER expects to issue a Program Opportunity Notice for MLPs and will be posting more information about the program shortly
Other Issues

- The DPU is still considering several issues related to solar and energy storage in DPU 17-146
- At issue in this proceeding are:
 - The continued eligibility of an otherwise eligible net metering facility to net meter when paired with Energy Storage
 - Capacity rights for certain Solar Tariff Generation Units and net metering facilities
- Until a final determination is made in 17-146, neither EDCs nor Solar Tariff Generation Unit Owners may claim the right to bid capacity into the Forward Capacity Market
Summary of Important Dates and Actions

<table>
<thead>
<tr>
<th>Date(s)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 11, 2018 - October 19, 2018</td>
<td>In person SMART transition stakeholder meetings held throughout Commonwealth</td>
</tr>
<tr>
<td>October 16, 2018</td>
<td>EDCs jointly file revised model tariff with DPU</td>
</tr>
<tr>
<td>October 24, 2018</td>
<td>SMART Statement of Qualification Application webinar</td>
</tr>
<tr>
<td>November 1, 2018</td>
<td>EDCs individually file SMART Factor cost recovery filings with DPU</td>
</tr>
<tr>
<td>November 26, 2018</td>
<td>SMART Application Launches at 12 PM ET / Final Eligibility Date for SREC II</td>
</tr>
<tr>
<td>November 30, 2018</td>
<td>Initial SMART application period ends at 11:59 PM ET</td>
</tr>
<tr>
<td>Approx. December 1, 2018</td>
<td>MLP solar rebate program opens and begins accepting applications</td>
</tr>
<tr>
<td>December 10, 2018</td>
<td>Documents demonstrating mechanical completion due for SREC II systems larger than 25 kW DC</td>
</tr>
<tr>
<td>February 15, 2019</td>
<td>SREC II applications systems equal to or smaller than 25 kW DC due</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU order approving revised joint model tariff</td>
</tr>
<tr>
<td>TBD</td>
<td>EDCs file company specific SMART tariffs</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU approves company specific SMART tariffs</td>
</tr>
<tr>
<td>TBD</td>
<td>DPU issues order on 17-146</td>
</tr>
</tbody>
</table>

Massachusetts Department of Energy Resources
Resources

 - Customer Disclosure Forms
 - Small System Direct Ownership
 - Small System Third Party Ownership
 - Community Shared Solar
 - Guidelines
 - Statement of Qualification Reservation Period
 - Definition of Agricultural Solar Tariff Generation Units Guideline
 - Land Use and Siting
 - Definition of Brownfield Guideline
 - Low Income Generation Units Guideline
 - Energy Storage
 - FAQ
 - Application Document Requirements
- SMART Model Tariff (Enter 17-140) https://eeaonline.eea.state.ma.us/DPU/Fileroom
- Email with Questions: DOER.SMART@mass.gov, MA.SMART@clearesult.com